GWADataLoader
Bases: object
A class to load and manage multiple data sources for genetic association studies. This class is designed to handle genotype matrices, summary statistics, LD matrices, and annotation matrices. It also provides functionalities to filter samples and/or SNPs, harmonize data sources, and compute LD matrices. This is all done in order to facilitate downstream statistical genetics analyses that require multiple data sources to be aligned and harmonized. The use cases include:
- Summary statistics-based PRS computation
- Summary statistics-based heritability estimation.
- Complex trait simulation.
- Performing Genome-wide association tests.
Attributes:
Name | Type | Description |
---|---|---|
genotype |
Union[Dict[int, GenotypeMatrix], None]
|
A dictionary of |
sample_table |
Union[SampleTable, None]
|
A |
phenotype_likelihood |
str
|
The likelihood of the phenotype (e.g. |
ld |
Union[Dict[int, LDMatrix], None]
|
A dictionary of |
sumstats_table |
Union[Dict[int, SumstatsTable], None]
|
A dictionary of |
annotation |
Union[Dict[int, AnnotationMatrix], None]
|
A dictionary of |
backend |
The backend software used for the computation. Currently, supports |
|
temp_dir |
The temporary directory where we store intermediate files (if necessary). |
|
output_dir |
The output directory where we store the results of the computation. |
Source code in magenpy/GWADataLoader.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
|
chromosomes
property
¶
Returns:
Type | Description |
---|---|
The list of chromosomes that were loaded to |
m
property
¶
n
property
¶
n_annotations
property
¶
Returns:
Type | Description |
---|---|
The number of annotations included in the annotation matrices. |
n_snps
property
¶
sample_size
property
¶
samples
property
¶
Returns:
Type | Description |
---|---|
The list of samples retained in the sample table. |
shapes
property
¶
Returns:
Type | Description |
---|---|
A dictionary where the key is the chromosome number and the value is the number of variants on that chromosome. |
snps
property
¶
Returns:
Type | Description |
---|---|
dict
|
The list of SNP rsIDs retained in each chromosome. |
__init__(bed_files=None, phenotype_file=None, covariates_file=None, keep_samples=None, keep_file=None, extract_snps=None, extract_file=None, min_maf=None, min_mac=None, drop_duplicated=True, phenotype_likelihood='gaussian', sumstats_files=None, sumstats_format='magenpy', ld_store_files=None, annotation_files=None, annotation_format='magenpy', backend='xarray', temp_dir='temp', output_dir='output', verbose=True, threads=1)
¶
Initialize the GWADataLoader
object with the data sources required for
downstream statistical genetics analyses.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bed_files
|
The path to the BED file(s). You may use a wildcard here to read files for multiple chromosomes. |
None
|
|
phenotype_file
|
The path to the phenotype file. (Default: tab-separated file with |
None
|
|
covariates_file
|
The path to the covariates file. (Default: tab-separated file starting with the |
None
|
|
keep_samples
|
A vector or list of sample IDs to keep when filtering the genotype matrix. |
None
|
|
keep_file
|
A path to a plink-style keep file to select a subset of individuals. |
None
|
|
extract_snps
|
A vector or list of SNP IDs to keep when filtering the genotype matrix. |
None
|
|
extract_file
|
A path to a plink-style extract file to select a subset of SNPs. |
None
|
|
min_maf
|
The minimum minor allele frequency cutoff. |
None
|
|
min_mac
|
The minimum minor allele count cutoff. |
None
|
|
drop_duplicated
|
If True, drop SNPs with duplicated rsID. |
True
|
|
phenotype_likelihood
|
The likelihood of the phenotype (e.g. |
'gaussian'
|
|
sumstats_files
|
The path to the summary statistics file(s). The path may be a wildcard. |
None
|
|
sumstats_format
|
The format for the summary statistics. Currently, supports the following formats: |
'magenpy'
|
|
ld_store_files
|
The path to the LD matrices. This may be a wildcard to accommodate reading data for multiple chromosomes. |
None
|
|
annotation_files
|
The path to the annotation file(s). The path may contain a wildcard. |
None
|
|
annotation_format
|
The format for the summary statistics. Currently, supports the following formats: |
'magenpy'
|
|
backend
|
The backend software used for computations with the genotype matrix. Currently, supports |
'xarray'
|
|
temp_dir
|
The temporary directory where to store intermediate files. |
'temp'
|
|
output_dir
|
The output directory where to store the results of the computation. |
'output'
|
|
verbose
|
Verbosity of the information printed to standard output. |
True
|
|
threads
|
The number of threads to use for computations. |
1
|
Source code in magenpy/GWADataLoader.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
align_with(other_gdls, axis='SNP', how='inner')
¶
Align the GWADataLoader
object with other GDL objects to have the same
set of SNPs or samples. This utility method is meant to enable the user to
align multiple data sources for downstream analyses.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other_gdls
|
A |
required | |
axis
|
The axis on which to perform the alignment (can be |
'SNP'
|
|
how
|
The type of join to perform across the datasets. For now, we support an inner join sort of operation. !!! warning Experimental for now, would like to add more features here in the near future. |
'inner'
|
Source code in magenpy/GWADataLoader.py
cleanup()
¶
Clean up all temporary files and directories
Source code in magenpy/GWADataLoader.py
compute_ld(estimator, output_dir, dtype='int16', compressor_name='zstd', compression_level=7, compute_spectral_properties=False, **ld_kwargs)
¶
Compute the Linkage-Disequilibrium (LD) matrix or SNP-by-SNP Pearson
correlation matrix between genetic variants. This function only considers correlations
between SNPs on the same chromosome. This is a utility function that calls the
.compute_ld()
method of the GenotypeMatrix
objects associated with
GWADataLoader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
estimator
|
The estimator for the LD matrix. We currently support 4 different estimators: |
required | |
output_dir
|
The output directory where the Zarr array containing the entries of the LD matrix will be stored. |
required | |
dtype
|
The data type for the entries of the LD matrix (supported data types are float32, float64 and integer quantized data types int8 and int16). |
'int16'
|
|
compressor_name
|
The name of the compression algorithm to use for the LD matrix. |
'zstd'
|
|
compression_level
|
The compression level to use for the entries of the LD matrix (1-9). |
7
|
|
compute_spectral_properties
|
If True, compute the spectral properties of the LD matrix. |
False
|
|
ld_kwargs
|
keyword arguments for the various LD estimators. Consult the implementations of |
{}
|
Source code in magenpy/GWADataLoader.py
filter_samples(keep_samples=None, keep_file=None)
¶
Filter samples from the samples table. User must specify either a list of samples to keep or the path to a file with the list of samples to keep.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keep_samples
|
A list or array of sample IDs to keep. |
None
|
|
keep_file
|
The path to a file with the list of samples to keep. |
None
|
Source code in magenpy/GWADataLoader.py
filter_snps(extract_snps=None, extract_file=None, chromosome=None)
¶
Filter the SNP set from all the GWADataLoader objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
extract_snps
|
A list or array of SNP rsIDs to keep. |
None
|
|
extract_file
|
A path to a plink-style file with SNP rsIDs to keep. |
None
|
|
chromosome
|
Chromosome number. If specified, applies the filter to that chromosome only. |
None
|
Source code in magenpy/GWADataLoader.py
get_ld_matrices()
¶
Returns:
Type | Description |
---|---|
A dictionary containing the chromosome ID as key and corresponding LD matrices as value. |
harmonize_data()
¶
This method ensures that the data sources (reference genotype, LD matrices, summary statistics, annotations) are all aligned in terms of the set of variants that they operate on as well as the designation of the effect allele for each variant.
Note
This method is called automatically during the initialization of the GWADataLoader
object.
However, if you read or manipulate the data sources after initialization,
you may need to call this method again to ensure that the data sources remain aligned.
Warning
Harmonization for now depends on having SNP rsID be present in all the resources. Hopefully this requirement will be relaxed in the future.
Source code in magenpy/GWADataLoader.py
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
|
load_ld()
¶
A utility method to load the LD matrices to memory from on-disk storage.
perform_gwas(**gwa_kwargs)
¶
Perform genome-wide association testing of all variants against the phenotype.
This is a utility function that calls the .perform_gwas()
method of the
GenotypeMatrix
objects associated with GWADataLoader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gwa_kwargs
|
Keyword arguments to pass to the GWA functions. Consult stats.gwa.utils for relevant keyword arguments for each backend. |
{}
|
Source code in magenpy/GWADataLoader.py
predict(beta=None)
¶
Predict the phenotype for the genotyped samples using the provided effect size
estimates beta
. For quantitative traits, this is equivalent to performing
linear scoring. For binary phenotypes, we transform the output using probit link function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
beta
|
A dictionary where the keys are the chromosome numbers and the values are a vector of effect sizes for each variant on that chromosome. If the betas are not provided, we use the marginal betas by default (if those are available). |
None
|
Source code in magenpy/GWADataLoader.py
read_annotations(annot_path, annot_format='magenpy', parser=None, **parse_kwargs)
¶
Read the annotation matrix from file. Annotations are a set of features associated
with each SNP and are generally represented in table format.
Consult the documentation for AnnotationMatrix
for more details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annot_path
|
The path to the annotation file(s). The path may contain a wildcard. |
required | |
annot_format
|
The format for the summary statistics. Currently, supports the following formats: |
'magenpy'
|
|
parser
|
If the annotation file does not follow any of the formats above, you can create your own parser by inheriting from the base |
None
|
|
parse_kwargs
|
keyword arguments for the parser. These are mainly parameters that will be passed to |
{}
|
Source code in magenpy/GWADataLoader.py
read_covariates(covariates_file, **read_csv_kwargs)
¶
Read the covariates file and integrate it with the sample tables and genotype matrices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
covariates_file
|
The path to the covariates file (Default: tab-separated file starting with the |
required | |
read_csv_kwargs
|
keyword arguments for the |
{}
|
Source code in magenpy/GWADataLoader.py
read_genotypes(bed_paths, keep_samples=None, keep_file=None, extract_snps=None, extract_file=None, min_maf=None, min_mac=1, drop_duplicated=True)
¶
Read the genotype matrix and/or associated metadata from plink's BED file format.
Consult the documentation for GenotypeMatrix
for more details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bed_paths
|
The path to the BED file(s). You may use a wildcard here to read files for multiple chromosomes. |
required | |
keep_samples
|
A vector or list of sample IDs to keep when filtering the genotype matrix. |
None
|
|
keep_file
|
A path to a plink-style file containing sample IDs to keep. |
None
|
|
extract_snps
|
A vector or list of SNP IDs to keep when filtering the genotype matrix. |
None
|
|
extract_file
|
A path to a plink-style file containing SNP IDs to keep. |
None
|
|
min_maf
|
The minimum minor allele frequency cutoff. |
None
|
|
min_mac
|
The minimum minor allele count cutoff. |
1
|
|
drop_duplicated
|
If True, drop SNPs with duplicated rsID. |
True
|
Source code in magenpy/GWADataLoader.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
|
read_ld(ld_store_paths)
¶
Read the LD matrix files stored on-disk in Zarr array format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ld_store_paths
|
The path to the LD matrices. This may be a wildcard to accommodate reading data for multiple chromosomes. |
required |
Source code in magenpy/GWADataLoader.py
read_phenotype(phenotype_file, drop_na=True, **read_csv_kwargs)
¶
Read the phenotype file and integrate it with the sample tables and genotype matrices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
phenotype_file
|
The path to the phenotype file (Default: tab-separated file with |
required | |
drop_na
|
Drop samples with missing phenotype information. |
True
|
|
read_csv_kwargs
|
keyword arguments for the |
{}
|
Source code in magenpy/GWADataLoader.py
read_summary_statistics(sumstats_path, sumstats_format='magenpy', parser=None, drop_duplicated=True, **parse_kwargs)
¶
Read GWAS summary statistics file(s) and parse them to SumstatsTable
objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sumstats_path
|
The path to the summary statistics file(s). The path may be a wildcard. |
required | |
sumstats_format
|
The format for the summary statistics. Currently supports the following formats: |
'magenpy'
|
|
parser
|
If the summary statistics file does not follow any of the formats above, you can create your own parser by inheriting from the base |
None
|
|
drop_duplicated
|
Drop SNPs with duplicated rsIDs. |
True
|
|
parse_kwargs
|
keyword arguments for the parser. These are mainly parameters that will be passed to |
{}
|
Source code in magenpy/GWADataLoader.py
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
|
release_ld()
¶
score(beta=None, standardize_genotype=False)
¶
Perform linear scoring, i.e. multiply the genotype matrix by the vector of effect sizes, beta
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
beta
|
A dictionary where the keys are the chromosome numbers and the values are a vector of effect sizes for each variant on that chromosome. If the betas are not provided, we use the marginal betas by default (if those are available). |
None
|
|
standardize_genotype
|
If True, standardize the genotype matrix before scoring. |
False
|
Source code in magenpy/GWADataLoader.py
set_phenotype(new_phenotype, phenotype_likelihood=None)
¶
A convenience method to update the phenotype column for the samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_phenotype
|
A vector or list of phenotype values. |
required | |
phenotype_likelihood
|
The phenotype likelihood (e.g. |
None
|
Source code in magenpy/GWADataLoader.py
split_by_chromosome()
¶
A utility method to split a GWADataLoader object by chromosome ID, such that
we would have one GWADataLoader
object per chromosome. The method returns a dictionary
where the key is the chromosome number and the value is the GWADataLoader
object corresponding
to that chromosome only.
Source code in magenpy/GWADataLoader.py
split_by_samples(proportions=None, groups=None, keep_original=True)
¶
Split the GWADataLoader
object by samples, if genotype or sample data
is available. The user must provide a list or proportion of samples in each split,
and the method will return a list of GWADataLoader
objects with only the samples
designated for each split. This may be a useful utility for training/testing split or some
other downstream tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
proportions
|
A list with the proportion of samples in each split. Must add to 1. |
None
|
|
groups
|
A list of lists containing the sample IDs in each split. |
None
|
|
keep_original
|
If True, keep the original |
True
|
Source code in magenpy/GWADataLoader.py
sync_sample_tables()
¶
A utility method to sync the sample tables of the
GenotypeMatrix
objects with the sample table under
the GWADataLoader
object. This is especially important
when setting new phenotypes (from the simulators) or reading
covariates files, etc.
Source code in magenpy/GWADataLoader.py
to_individual_table()
¶
Returns:
Type | Description |
---|---|
A plink-style dataframe of individual IDs, in the form of Family ID (FID) and Individual ID (IID). |
Source code in magenpy/GWADataLoader.py
to_phenotype_table()
¶
Returns:
Type | Description |
---|---|
A plink-style dataframe with each individual's Family ID (FID), Individual ID (IID), and phenotype value. |
Source code in magenpy/GWADataLoader.py
to_snp_table(col_subset=None, per_chromosome=False, resource='auto')
¶
Get a dataframe of SNP data for all variants across different chromosomes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_subset
|
The subset of columns to obtain. |
None
|
|
per_chromosome
|
If True, returns a dictionary where the key is the chromosome number and the value is the SNP table per chromosome. |
False
|
|
resource
|
The data source to extract the SNP table from. By default, the method will try to extract the SNP table from the genotype matrix. If the genotype matrix is not available, then it will try to extract the SNP information from the LD matrix or the summary statistics table. Possible values: |
'auto'
|
Returns:
Type | Description |
---|---|
A dataframe (or dictionary of dataframes) of SNP data. |
Source code in magenpy/GWADataLoader.py
to_summary_statistics_table(col_subset=None, per_chromosome=False)
¶
Get a dataframe of the GWAS summary statistics for all variants across different chromosomes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_subset
|
The subset of columns (or summary statistics) to obtain. |
None
|
|
per_chromosome
|
If True, returns a dictionary where the key is the chromosome number and the value is the summary statistics table per chromosome. |
False
|
Returns:
Type | Description |
---|---|
A dataframe (or dictionary of dataframes) of summary statistics. |