LDMatrix
Bases: object
A class that represents Linkage-Disequilibrium (LD) matrices, which record
the SNP-by-SNP pairwise correlations in a sample of genetic data. The class
provides various functionalities for initializing, storing, loading, and
performing computations with LD matrices. The LD matrices are stored in a
hierarchical format using the Zarr
library, which allows for efficient
storage and retrieval of the data.
The class provides the following functionalities:
- Initialize an
LDMatrix
object from plink's LD table files. - Initialize an
LDMatrix
object from a sparse CSR matrix. - Initialize an
LDMatrix
object from a Zarr array store. - Compute LD scores for each SNP in the LD matrix.
- Filter the LD matrix based on SNP indices or ranges.
- Perform linear algebra operations on LD matrices, including SVD, estimating extremal eigenvalues, and efficient matrix-vector multiplication.
The Zarr hierarchy is structured as follows:
chr_22.zarr
: The Zarr group.matrix
: The subgroup containing the data of the LD matrix in Scipy Sparse CSR matrix format.data
: The array containing the non-zero entries of the LD matrix.indptr
: The array containing the index pointers for the CSR matrix.
metadata
: The subgroup containing the metadata for variants included in the LD matrix.snps
: The array containing the SNP rsIDs.a1
: The array containing the alternative alleles.a2
: The array containing the reference alleles.maf
: The array containing the minor allele frequencies.bp
: The array containing the base pair positions.cm
: The array containing the centi Morgan distance along the chromosome.ldscore
: The array containing the LD scores.
attrs
: A JSON-style metadata object containing general information about how the LD matrix was calculated, including the chromosome number, sample size, genome build, LD estimator, and estimator properties.
Attributes:
Name | Type | Description |
---|---|---|
_zg |
The Zarr group object that stores the LD matrix and its metadata. |
|
_mat |
The in-memory CSR matrix object. |
|
in_memory |
A boolean flag indicating whether the LD matrix is in memory. |
|
is_symmetric |
A boolean flag indicating whether the LD matrix is symmetric. |
|
index |
An integer index for the current SNP in the LD matrix (useful for iterators). |
|
_mask |
A boolean mask for filtering the LD matrix. |
Source code in magenpy/LDMatrix.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 |
|
a1
property
¶
Returns:
Type | Description |
---|---|
The alternative alleles of the variants included in the LD matrix. |
a2
property
¶
Returns:
Type | Description |
---|---|
The reference alleles of the variants included in the LD matrix. |
bp_position
property
¶
See Also
Returns:
Type | Description |
---|---|
The base pair position of each SNP in the LD matrix. |
chromosome
property
¶
Returns:
Type | Description |
---|---|
The chromosome for which this LD matrix was calculated. |
chunk_size
property
¶
Returns:
Type | Description |
---|---|
The chunk size for the data array of the LD matrix. |
chunks
property
¶
Returns:
Type | Description |
---|---|
The chunks for the data array of the LD matrix. |
cm_position
property
¶
Returns:
Type | Description |
---|---|
The centi Morgan (cM) position of each variant in the LD matrix. |
compressor
property
¶
Returns:
Type | Description |
---|---|
The |
csr_matrix
property
¶
..note ::
If the LD matrix is not in-memory, then it'll be loaded using default settings.
This means that the matrix will be loaded as upper-triangular matrix with
default data type. To customize the loading, call the .load(...)
method before
accessing the CSR matrix in this way.
Returns:
Type | Description |
---|---|
The in-memory CSR matrix object. |
data
property
¶
Returns:
Type | Description |
---|---|
The |
dequantization_scale
property
¶
Returns:
Type | Description |
---|---|
The dequantization scale for the quantized LD matrix. If the matrix is not quantized, returns 1. |
dtype
property
¶
Returns:
Type | Description |
---|---|
The data type for the entries of the |
estimator_properties
property
¶
Returns:
Type | Description |
---|---|
The properties of the LD estimator used to compute the LD matrix. |
genome_build
property
¶
Returns:
Type | Description |
---|---|
The genome build based on which the base pair coordinates are defined. |
indices
property
¶
Returns:
Type | Description |
---|---|
The column indices of the non-zero elements of the sparse, CSR representation of the LD matrix. |
indptr
property
¶
Returns:
Type | Description |
---|---|
The index pointers |
ld_boundaries
property
¶
The LD boundaries associated with each variant.
The LD boundaries are defined as the index of the leftmost neighbor
(lower boundary) and the rightmost neighbor (upper boundary) of for each variant.
If the LD matrix is upper triangular, then the boundaries for variant i
go from i + 1
to i + k_i
,
where k_i
is the number of neighbors that SNP i
is in LD with.
Returns:
Type | Description |
---|---|
A matrix of shape |
ld_estimator
property
¶
Returns:
Type | Description |
---|---|
The LD estimator used to compute the LD matrix. Examples include: |
ld_score
property
¶
Returns:
Type | Description |
---|---|
The LD score of each variant in the LD matrix. |
maf
property
¶
Returns:
Type | Description |
---|---|
The minor allele frequency (MAF) of the alternative allele (A1) in the LD matrix. |
n_neighbors
property
¶
See Also
Note
This includes the variant itself if the matrix is in memory and is symmetric.
Returns:
Type | Description |
---|---|
The number of variants in the LD window for each SNP. |
n_snps
property
¶
Returns:
Type | Description |
---|---|
The number of variants in the LD matrix. If a mask is set, we return the number of variants included in the mask. |
row_indices
property
¶
Returns:
Type | Description |
---|---|
The row indices of the non-zero elements of the sparse, CSR representation of the LD matrix |
sample_size
property
¶
Returns:
Type | Description |
---|---|
The sample size used to compute the LD matrix. |
snps
property
¶
Returns:
Type | Description |
---|---|
rsIDs of the variants included in the LD matrix. |
store
property
¶
Returns:
Type | Description |
---|---|
The Zarr group store object. |
stored_dtype
property
¶
Returns:
Type | Description |
---|---|
The data type for the stored entries of |
stored_n_snps
property
¶
Returns:
Type | Description |
---|---|
The number of variants stored in the LD matrix (irrespective of any masks / filters). |
stored_shape
property
¶
Returns:
Type | Description |
---|---|
The shape of the stored LD matrix (irrespective of any masks / filters). |
window_size
property
¶
See Also
Note
This includes the variant itself if the matrix is in memory and is symmetric.
Returns:
Type | Description |
---|---|
The number of variants in the LD window for each SNP. |
zarr_group
property
¶
Returns:
Type | Description |
---|---|
The Zarr group object that stores the LD matrix and its metadata. |
__getitem__(item)
¶
Access the LD matrix entries via the []
operator.
This implementation supports the following types of indexing:
* Accessing a single row of the LD matrix by specifying numeric index or SNP rsID.
* Accessing a single entry of the LD matrix by specifying numeric indices or SNP rsIDs.
Example usages:
>>> ldm[0]
>>> ldm['rs123']
>>> ldm['rs123', 'rs456']
Source code in magenpy/LDMatrix.py
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 |
|
__init__(zarr_group, symmetric=False)
¶
Initialize an LDMatrix
object from a Zarr group store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zarr_group
|
The Zarr group object that stores the LD matrix. |
required | |
symmetric
|
A boolean flag indicating whether to represent the LD matrix as symmetric. |
False
|
Source code in magenpy/LDMatrix.py
__iter__()
¶
TODO: Add a flag to allow for chunked iterator, with limited memory footprint.
compute_ld_scores(annotation_matrix=None, corrected=True, chunk_size=10000)
¶
Computes the LD scores for variants in the LD matrix. LD Scores are defined as the sum of the squared pairwise Pearson Correlation coefficient between the focal SNP and all its neighboring SNPs. See Bulik-Sullivan et al. (2015) for details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation_matrix
|
A matrix of annotations for each variant for which to aggregate the LD scores. |
None
|
|
corrected
|
Use the sample-size corrected estimator for the squared Pearson correlation coefficient. See Bulik-Sullivan et al. (2015). |
True
|
|
chunk_size
|
Specify the number of rows (i.e. SNPs) to compute the LD scores for simultaneously. Smaller chunk sizes should require less memory resources. If set to None, we compute LD scores for all SNPs in the LD matrix in one go. |
10000
|
Returns:
Type | Description |
---|---|
An array of LD scores for each variant in the LD matrix. |
Source code in magenpy/LDMatrix.py
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 |
|
dot(vec)
¶
Multiply the LD matrix with an input vector vec
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vec
|
The input vector to multiply with the LD matrix. !!! seealso "See Also" * multiply |
required |
Returns:
Type | Description |
---|---|
The product of the LD matrix with the input vector. |
Source code in magenpy/LDMatrix.py
estimate_extremal_eigenvalues(block_size=None, block_size_cm=None, block_size_kb=None, blocks=None, which='both', return_block_boundaries=False, assign_to_variants=False)
¶
Estimate the smallest/largest algebraic eigenvalues of the LD matrix. This is useful for analyzing the spectral properties of the LD matrix and detecting potential issues for downstream applications that leverage the LD matrix. For instance, many LD matrices are not positive semi-definite (PSD) and this manifests in having negative eigenvalues. This function can be used to detect such issues.
To perform this computation efficiently, we leverage fast ARPACK routines provided by scipy
to
compute only the extremal eigenvalues of the LD matrix. Another advantage of this implementation
is that it doesn't require symmetric or dequantized LD matrices. The LDLinearOperator
class
can be used to perform all the computations without symmetrizing or dequantizing the matrix beforehand,
which should make it more efficient in terms of memory and CPU resources.
Furthermore, this function supports computing eigenvalues for sub-blocks of the LD matrix,
by simply providing one of the following parameters:
* block_size
: Number of variants per block
* block_size_cm
: Block size in centi-Morgans
* block_size_kb
Block size in kilobases
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_size
|
An integer specifying the block size or number of variants to compute the minimum eigenvalue for. If provided, we compute minimum eigenvalues for each block in the LD matrix separately, instead of the minimum eigenvalue for the entire matrix. This can be useful for large LD matrices that don't fit in memory or in cases where information about local blocks is needed. |
None
|
|
block_size_cm
|
The block size in centi-Morgans (cM) to compute the minimum eigenvalue for. |
None
|
|
block_size_kb
|
The block size in kilo-base pairs (kb) to compute the minimum eigenvalue for. |
None
|
|
blocks
|
An array or list specifying the block boundaries to compute the minimum eigenvalue for. If there are B blocks, then the array should be of size B + 1, with the entries specifying the start position of each block. |
None
|
|
which
|
The extremal eigenvalues to compute. Options are 'min', 'max', or 'both'. |
'both'
|
|
return_block_boundaries
|
If True, return the block boundaries used to compute the minimum eigenvalue. |
False
|
|
assign_to_variants
|
If True, assign the minimum eigenvalue to the variants used to compute it. |
False
|
Returns:
Type | Description |
---|---|
The extremal eigenvalue(s) of the LD matrix or sub-blocks of the LD matrix. If |
Source code in magenpy/LDMatrix.py
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 |
|
estimate_uncompressed_size(dtype=None)
¶
Provide an estimate of size of the uncompressed LD matrix in megabytes (MB). This is only a rough estimate. Depending on how the LD matrix is loaded, actual memory usage may be larger than this estimate.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dtype
|
The data type for the entries of the LD matrix. If None, the stored data type is used to determine the size of the data in memory. |
None
|
Returns:
Type | Description |
---|---|
The estimated size of the uncompressed LD matrix in MB. |
Source code in magenpy/LDMatrix.py
filter_long_range_ld_regions()
¶
A utility method to exclude variants that are in long-range LD regions. The boundaries of those regions are derived from here:
https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
Which is based on the work of
Anderson, Carl A., et al. "Data quality control in genetic case-control association studies." Nature protocols 5.9 (2010): 1564-1573.
Source code in magenpy/LDMatrix.py
filter_snps(extract_snps=None, extract_file=None)
¶
Filter the LDMatrix to keep a subset of variants. This mainly sets the mask for the LD matrix, which is used to hide/remove some SNPs from the LD matrix, without altering the stored objects on-disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
extract_snps
|
A list or array of SNP rsIDs to keep. |
None
|
|
extract_file
|
A plink-style file containing the SNP rsIDs to keep. |
None
|
Source code in magenpy/LDMatrix.py
from_csr(csr_mat, store_path, overwrite=False, dtype='int16', compressor_name='zstd', compression_level=7)
classmethod
¶
Initialize an LDMatrix object from a sparse CSR matrix.
TODO: Determine the chunksize based on the avg neighborhood size?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
csr_mat
|
The sparse CSR matrix. |
required | |
store_path
|
The path to the Zarr LD store where the data will be stored. |
required | |
overwrite
|
If True, it overwrites the LD store at |
False
|
|
dtype
|
The data type for the entries of the LD matrix (supported data types are float32, float64 and integer quantized data types int8 and int16). |
'int16'
|
|
compressor_name
|
The name of the compressor or compression algorithm to use with Zarr. |
'zstd'
|
|
compression_level
|
The compression level to use with the compressor (1-9). |
7
|
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
from_dense_zarr_matrix(dense_zarr, ld_boundaries, store_path, overwrite=False, delete_original=False, dtype='int16', compressor_name='zstd', compression_level=7)
classmethod
¶
Initialize a new LD matrix object using a Zarr array object. This method is useful for converting a dense LD matrix computed using Dask (or other distributed computing software) to a sparse or banded one.
TODO: Determine the chunksize based on the avg neighborhood size?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dense_zarr
|
The path to the dense Zarr array object. |
required | |
ld_boundaries
|
The LD boundaries for each SNP in the LD matrix (delineates the indices of the leftmost and rightmost neighbors of each SNP). |
required | |
store_path
|
The path where to store the new LD matrix. |
required | |
overwrite
|
If True, it overwrites the LD store at |
False
|
|
delete_original
|
If True, it deletes the original dense LD matrix. |
False
|
|
dtype
|
The data type for the entries of the LD matrix (supported data types are float32, float64 and integer quantized data types int8 and int16). |
'int16'
|
|
compressor_name
|
The name of the compressor or compression algorithm to use with Zarr. |
'zstd'
|
|
compression_level
|
The compression level to use with the compressor (1-9). |
7
|
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
from_directory(dir_path)
classmethod
¶
Initialize an LDMatrix
object from a Zarr array store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dir_path
|
required |
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
from_path(ld_store_path)
classmethod
¶
Initialize an LDMatrix
object from a pre-computed Zarr group store. This is a genetic method
that can work with both cloud-based stores (e.g. s3 storage) or local filesystems.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ld_store_path
|
The path to the Zarr array store. !!! seealso "See Also" * from_directory * from_s3 |
required |
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
from_plink_table(plink_ld_file, snps, store_path, ld_boundaries=None, pandas_chunksize=None, overwrite=False, dtype='int16', compressor_name='zstd', compression_level=7)
classmethod
¶
Construct a Zarr LD matrix using LD tables generated by plink1.9.
TODO: Determine the chunksize based on the avg neighborhood size?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
plink_ld_file
|
The path to the plink LD table file. |
required | |
snps
|
An iterable containing the list of ordered SNP rsIDs to be included in the LD matrix. |
required | |
store_path
|
The path to the Zarr LD store. |
required | |
ld_boundaries
|
The LD boundaries for each SNP in the LD matrix (delineates the indices of the leftmost and rightmost neighbors of each SNP). If not provided, the LD matrix will be constructed using the full LD table from plink. |
None
|
|
pandas_chunksize
|
If the LD table is large, provide chunk size (i.e. number of rows to process at each step) to keep memory footprint manageable. |
None
|
|
overwrite
|
If True, it overwrites the LD store at |
False
|
|
dtype
|
The data type for the entries of the LD matrix (supported data types are float32, float64 and integer quantized data types int8 and int16). |
'int16'
|
|
compressor_name
|
The name of the compressor or compression algorithm to use with Zarr. |
'zstd'
|
|
compression_level
|
The compression level to use with the compressor (1-9). |
7
|
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
from_ragged_zarr_matrix(ragged_zarr, store_path, overwrite=False, delete_original=False, dtype='int16', compressor_name='zstd', compression_level=7)
classmethod
¶
Initialize a new LD matrix object using a Zarr array object conforming to the old LD Matrix format from magenpy v<=0.0.12.
This utility function will also copy some of the stored attributes associated with the matrix in the old format.
TODO: Determine the chunksize based on the avg neighborhood size?
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ragged_zarr
|
The path to the ragged Zarr array object. |
required | |
store_path
|
The path where to store the new LD matrix. |
required | |
overwrite
|
If True, it overwrites the LD store at |
False
|
|
delete_original
|
If True, it deletes the original ragged LD matrix. |
False
|
|
dtype
|
The data type for the entries of the LD matrix (supported data types are float32, float64 and integer quantized data types int8 and int16). |
'int16'
|
|
compressor_name
|
The name of the compressor or compression algorithm to use with Zarr. |
'zstd'
|
|
compression_level
|
The compression level to use with the compressor (1-9). |
7
|
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
|
from_s3(s3_path, cache_size=None)
classmethod
¶
Initialize an LDMatrix
object from a Zarr group store hosted on AWS s3 storage.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s3_path
|
The path to the Zarr group store on AWS s3. s3 paths are expected to be of the form |
required | |
cache_size
|
The size of the cache for the Zarr store (in bytes). .. note:: Requires installing the |
None
|
Returns:
Type | Description |
---|---|
An |
Source code in magenpy/LDMatrix.py
get_lambda_min(aggregate=None, min_max_ratio=0.0)
¶
A utility method to compute the lambda_min
value for the LD matrix. lambda_min
is the smallest
algebraic eigenvalue of the LD matrix. This quantity is useful to know in some applications.
The function retrieves minimum eigenvalue (if pre-computed and stored) per block and maps it
to each variant in the corresponding block. If minimum eigenvalues per block are not available,
we use global minimum eigenvalue (either from matrix attributes or we compute it on the spot).
Before returning the lambda_min
value to the user, we apply the following transformation:
abs(min(lambda_min, 0.))
This implies that if the minimum eigenvalue is non-negative, we just return 0. for lambda_min
. We are mainly
interested in negative eigenvalues here (if they exist).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
aggregate
|
A summary of the minimum eigenvalue across variants or across blocks (if available). Supported aggregation functions are |
None
|
|
min_max_ratio
|
The ratio between the absolute values of the minimum and maximum eigenvalues. This could be used to target a particular threshold for the minimum eigenvalue. |
0.0
|
Returns:
Type | Description |
---|---|
The absolute value of the minimum eigenvalue for the LD matrix. If the minimum eigenvalue is non-negative, we return zero. |
Source code in magenpy/LDMatrix.py
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 |
|
get_linear_operator(start_row=None, end_row=None, **linop_kwargs)
¶
Use scipy.sparse
interface to construct a LinearOperator
object representing the LD matrix.
This is useful for performing various linear algebra routines on the LD matrix without
necessarily symmetrizing or de-quantizing it beforehand. For instance, this operator can
be used to compute matrix-vector products with the LD matrix, solve linear systems,
perform SVD, compute eigenvalues, etc.
See Also
- [LDLinearOperator][magenpy.LDMatrix.LDLinearOperator]
.. note :: For now, start and end row positions are always with reference to the original matrix (i.e. without applying any masks or filters).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_row
|
The start row to load to memory (if loading a subset of the matrix). |
None
|
|
end_row
|
The end row (not inclusive) to load to memory (if loading a subset of the matrix). |
None
|
|
linop_kwargs
|
Keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
A scipy |
Source code in magenpy/LDMatrix.py
get_long_range_ld_variants(return_value='snps')
¶
A utility method to exclude variants that are in long-range LD regions. The boundaries of those regions are derived from here:
https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)
Which is based on the work of
Anderson, Carl A., et al. "Data quality control in genetic case-control association studies." Nature protocols 5.9 (2010): 1564-1573.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
return_value
|
The value to return. Options are 'mask', 'index', 'snps'. If |
'snps'
|
Returns:
Type | Description |
---|---|
An array of the variants that are in long-range LD regions. |
Source code in magenpy/LDMatrix.py
get_mask()
¶
get_metadata(key, apply_mask=True)
¶
Get the metadata associated with each variant in the LD matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
The key for the metadata item. |
required | |
apply_mask
|
If True, apply the mask (e.g. filter) to the metadata. |
True
|
Returns:
Type | Description |
---|---|
The metadata item for each variant in the LD matrix. |
Raises:
Type | Description |
---|---|
KeyError
|
if the metadata item is not set. |
Source code in magenpy/LDMatrix.py
get_row(index, return_indices=False)
¶
Extract a single row from the LD matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
The index of the row to extract. |
required | |
return_indices
|
If True, return the indices of the non-zero elements of that row. |
False
|
Returns:
Type | Description |
---|---|
The requested row of the LD matrix. |
Source code in magenpy/LDMatrix.py
get_store_attr(attr)
¶
Get the attribute or metadata attr
associated with the LD matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
attr
|
The attribute name. |
required |
Returns:
Type | Description |
---|---|
The value for the attribute. |
Raises:
Type | Description |
---|---|
KeyError
|
if the attribute is not set. |
Source code in magenpy/LDMatrix.py
get_total_stored_bytes()
¶
Estimate the storage size for all elements of the LDMatrix
hierarchy,
including the LD data arrays, metadata arrays, and attributes.
Returns:
Type | Description |
---|---|
The estimated size of the stored and compressed LDMatrix object in bytes. |
Source code in magenpy/LDMatrix.py
list_store_attributes()
¶
Get all the attributes associated with the LD matrix.
Returns:
Type | Description |
---|---|
A list of all the attributes. |
load(force_reload=False, return_symmetric=True, dtype=None)
¶
Load the LD matrix from on-disk storage in the form of Zarr arrays to memory, in the form of sparse CSR matrices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
force_reload
|
If True, it will reload the data even if it is already in memory. |
False
|
|
return_symmetric
|
If True, return a full symmetric representation of the LD matrix. |
True
|
|
dtype
|
The data type for the entries of the LD matrix. !!! seealso "See Also" * load_data |
None
|
Returns:
Type | Description |
---|---|
The LD matrix as a |
Source code in magenpy/LDMatrix.py
load_data(start_row=None, end_row=None, dtype=None, return_square=True, return_symmetric=False, return_as_csr=False, keep_original_shape=False)
¶
A utility function to load and process the LD matrix data. This function is particularly useful for filtering, symmetrizing, and dequantizing the LD matrix after it's loaded to memory.
.. note :: Start and end row positions are always with reference to the stored on-disk LD matrix.
TODO: Implement caching mechanism for non-CSR-formatted data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_row
|
The start row to load to memory (if loading a subset of the matrix). |
None
|
|
end_row
|
The end row (not inclusive) to load to memory (if loading a subset of the matrix). |
None
|
|
dtype
|
The data type for the entries of the LD matrix. |
None
|
|
return_square
|
If True, return a square representation of the LD matrix. This flag is used in conjunction with the |
True
|
|
return_symmetric
|
If True, return a full symmetric representation of the LD matrix. |
False
|
|
return_as_csr
|
If True, return the data in the CSR format. |
False
|
|
keep_original_shape
|
This flag is used in conjunction with the |
False
|
Returns:
Type | Description |
---|---|
A tuple of the index pointer array, the data array, and the leftmost index array. If |
Source code in magenpy/LDMatrix.py
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 |
|
multiply(vec)
¶
Multiply the LD matrix with an input vector vec
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vec
|
The input vector to multiply with the LD matrix. !!! seealso "See Also" * dot |
required |
Returns:
Type | Description |
---|---|
The product of the LD matrix with the input vector. |
Source code in magenpy/LDMatrix.py
perform_svd(**svds_kwargs)
¶
Perform the Singular Value Decomposition (SVD) on the LD matrix.
This method is a wrapper around the scipy.sparse.linalg.svds
function and provides
utilities to perform SVD with a LinearOperator for large-scale LD matrix, so that
the matrices don't need to be fully represented in memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
svds_kwargs
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
The result of the SVD decomposition of the LD matrix. |
Source code in magenpy/LDMatrix.py
prune(threshold)
¶
Perform LD pruning to remove variants that are in high LD with other variants. If two variants are in high LD, this function keeps the variant that occurs earlier in the matrix. This behavior will be updated in the future to allow for arbitrary ordering of variants.
Note
Experimental for now. Needs further testing & improvement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
threshold
|
The absolute value of the Pearson correlation coefficient above which to prune variants. |
required |
Returns:
Type | Description |
---|---|
A boolean array indicating whether a variant is kept after pruning. A positive floating point number between 0. and 1. |
Source code in magenpy/LDMatrix.py
release()
¶
reset_mask()
¶
Reset the mask to its default value (None).
set_mask(mask)
¶
Set the mask (a boolean array) to hide/remove some SNPs from the LD matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
An array of indices or boolean mask for SNPs to retain. |
required |
Source code in magenpy/LDMatrix.py
set_metadata(key, value, overwrite=False)
¶
Set the metadata field associated with variants the LD matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
The key for the metadata item. |
required | |
value
|
The value for the metadata item (an array with the same length as the number of variants). |
required | |
overwrite
|
If True, overwrite the metadata item if it already exists. |
False
|
Source code in magenpy/LDMatrix.py
set_store_attr(attr, value)
¶
Set the attribute attr
associated with the LD matrix. This is used
to set high-level information, such as information about the sample from which
the matrix was computed, the LD estimator used, its properties, etc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
attr
|
The attribute name. |
required | |
value
|
The value for the attribute. |
required |
Source code in magenpy/LDMatrix.py
to_snp_table(col_subset=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_subset
|
The subset of columns to add to the table. If None, it returns all available columns. |
None
|
Returns:
Type | Description |
---|---|
A |
Source code in magenpy/LDMatrix.py
update_rows_inplace(new_csr, start_row=None, end_row=None)
¶
A utility function to perform partial updates to a subset of rows in the
LD matrix. The function takes a new CSR matrix and, optionally, a start
and end row delimiting the chunk of the LD matrix to update with the new_csr
.
Note
Current implementation assumes that the update does not change the sparsity structure of the original matrix. Updating the matrix with new sparsity structure is a harder problem that we will try to tackle later on.
Note
Current implementation assumes new_csr
is upper triangular.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_csr
|
A sparse CSR matrix ( |
required | |
start_row
|
The start row for the chunk to update. |
None
|
|
end_row
|
The end row for the chunk to update. |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the column dimension of |
Source code in magenpy/LDMatrix.py
validate_ld_matrix()
¶
Checks that the LDMatrix
object has correct structure and
checks its contents for validity.
Specifically, we check that: * The dimensions of the matrix and its associated attributes are matching. * The masking is working properly. * Index pointer is valid and its contents make sense.
Returns:
Type | Description |
---|---|
True if the matrix has the correct structure. |
Raises:
Type | Description |
---|---|
ValueError
|
If the matrix or some of its entries are not valid. |