BayesPRSModel
BayesPRSModel
¶
A base class for Bayesian PRS models. This class defines the basic structure and methods that are common to most Bayesian PRS models. Specifically, this class provides methods and interfaces for initialization, harmonization, prediction, and fitting of Bayesian PRS models.
The class is generic is designed to be inherited and extended by
specific Bayesian PRS models, such as LDPred
and VIPRS
.
Attributes:
Name | Type | Description |
---|---|---|
gdl |
A GWADataLoader object containing harmonized GWAS summary statistics and Linkage-Disequilibrium (LD) matrices. |
|
Nj |
A dictionary where keys are chromosomes and values are the sample sizes per variant. |
|
shapes |
A dictionary where keys are chromosomes and values are the shapes of the variant arrays (e.g. the number of variants per chromosome). |
|
_sample_size |
The average per-SNP sample size. |
|
pip |
The posterior inclusion probability. |
|
post_mean_beta |
The posterior mean for the effect sizes. |
|
post_var_beta |
The posterior variance for the effect sizes. |
Source code in viprs/model/BayesPRSModel.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
chromosomes
property
¶
Returns:
Type | Description |
---|---|
The list of chromosomes that are included in the BayesPRSModel |
m: int
property
¶
n: int
property
¶
Returns:
Type | Description |
---|---|
int
|
The number of samples in the model. If not available, average the per-SNP sample sizes. |
__init__(gdl)
¶
Initialize the Bayesian PRS model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
An instance of |
required |
Source code in viprs/model/BayesPRSModel.py
fit(*args, **kwargs)
¶
A genetic method to fit the Bayesian PRS model. This method should be implemented by the specific Bayesian PRS model.
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the method is not implemented in the child class. |
Source code in viprs/model/BayesPRSModel.py
get_heritability()
¶
A generic method to get an estimate of the heritability, or proportion of variance explained by SNPs.
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the method is not implemented in the child class. |
Source code in viprs/model/BayesPRSModel.py
get_pip()
¶
get_posterior_mean_beta()
¶
Returns:
Type | Description |
---|---|
The posterior mean of the effect sizes (BETA) for each variant in the model. |
get_posterior_variance_beta()
¶
Returns:
Type | Description |
---|---|
The posterior variance of the effect sizes (BETA) for each variant in the model. |
get_proportion_causal()
¶
A generic method to get an estimate of the proportion of causal variants.
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the method is not implemented in the child class. |
harmonize_data(gdl=None, parameter_table=None)
¶
Harmonize the inferred effect sizes with a new GWADataLoader object. This method is useful when the user wants to predict on new samples or when the effect sizes are inferred from a different set of samples. The method aligns the effect sizes with the SNP table in the GWADataLoader object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
An instance of |
None
|
|
parameter_table |
A |
None
|
Returns:
Type | Description |
---|---|
A tuple of the harmonized posterior inclusion probability, posterior mean for the effect sizes, and posterior variance for the effect sizes. |
Source code in viprs/model/BayesPRSModel.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
predict(test_gdl=None)
¶
Given the inferred effect sizes, predict the phenotype for the training samples in
the GWADataLoader object or new test samples. If test_gdl
is not provided, genotypes
from training samples will be used (if available).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_gdl |
A GWADataLoader object containing genotype data for new test samples. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the posterior means for BETA are not set. AssertionError if the GWADataLoader object does not contain genotype data. |
Source code in viprs/model/BayesPRSModel.py
pseudo_validate(test_gdl, metric='pearson_correlation')
¶
Evaluate the prediction accuracy of the inferred PRS using external GWAS summary statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_gdl |
A |
required | |
metric |
The metric to use for evaluation. Options: 'r2' or 'pearson_correlation'. |
'pearson_correlation'
|
Returns:
Type | Description |
---|---|
The pseudo-validation metric. |
Source code in viprs/model/BayesPRSModel.py
read_inferred_parameters(f_names, sep='\\s+')
¶
Read a file with the inferred parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f_names |
A path (or list of paths) to the file with the effect sizes. |
required | |
sep |
The delimiter for the file(s). |
'\\s+'
|
Source code in viprs/model/BayesPRSModel.py
set_model_parameters(parameter_table)
¶
Parses a pandas dataframe with model parameters and assigns them to the corresponding class attributes.
For example:
* Columns with BETA
, will be assigned to self.post_mean_beta
.
* Columns with PIP
will be assigned to self.pip
.
* Columns with VAR_BETA
, will be assigned to self.post_var_beta
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameter_table |
A pandas table or dataframe. |
required |
Source code in viprs/model/BayesPRSModel.py
to_table(col_subset=('CHR', 'SNP', 'POS', 'A1', 'A2'), per_chromosome=False)
¶
Output the posterior estimates for the effect sizes to a pandas dataframe.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_subset |
The subset of columns to include in the tables (in addition to the effect sizes). |
('CHR', 'SNP', 'POS', 'A1', 'A2')
|
|
per_chromosome |
If True, return a separate table for each chromosome. |
False
|
Returns:
Type | Description |
---|---|
A pandas Dataframe with the posterior estimates for the effect sizes. |
Source code in viprs/model/BayesPRSModel.py
write_inferred_parameters(f_name, per_chromosome=False, sep='\t')
¶
A convenience method to write the inferred posterior for the effect sizes to file.
TODO: * Support outputting scoring files compatible with PGS catalog format: https://www.pgscatalog.org/downloads/#dl_scoring_files
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f_name |
The filename (or directory) where to write the effect sizes |
required | |
per_chromosome |
If True, write a file for each chromosome separately. |
False
|
|
sep |
The delimiter for the file (tab by default). |
'\t'
|