VIPRS
VIPRS
¶
Bases: BayesPRSModel
The base class for performing Variational Inference of Polygenic Risk Scores (VIPRS).
This class implements the Variational EM algorithm for estimating the posterior distribution of the effect sizes using GWAS summary statistics. The model assumes a spike-and-slab mixture prior on the effect size distribution, with the spike component representing the null effects and the slab component representing the non-null effects.
Details for the algorithm can be found in the Supplementary Material of the following paper:
Zabad S, Gravel S, Li Y. Fast and accurate Bayesian polygenic risk modeling with variational inference. Am J Hum Genet. 2023 May 4;110(5):741-761. doi: 10.1016/j.ajhg.2023.03.009. Epub 2023 Apr 7. PMID: 37030289; PMCID: PMC10183379.
Attributes:
Name | Type | Description |
---|---|---|
gdl |
An instance of GWADataLoader containing harmonized GWAS summary statistics and LD matrices. |
|
var_gamma |
A dictionary of the variational gamma parameter, denoting the probability that the variant comes from the slab component. |
|
var_mu |
A dictionary of the variational mu parameter, denoting the mean of the effect size for each variant. |
|
var_tau |
A dictionary of the variational tau parameter, denoting the precision of the effect size for each variant. |
|
eta |
A dictionary of the posterior mean of the effect size, E[B] = gamma*mu. |
|
zeta |
A dictionary of the expectation of B^2 under the posterior, E[B^2] = gamma*(mu^2 + 1./tau). |
|
eta_diff |
A dictionary of the difference between the etas in two consecutive iterations. |
|
q |
A dictionary of the q-factor, which keeps track of the multiplication of eta with the LD matrix. |
|
ld_data |
A dictionary of the |
|
ld_indptr |
A dictionary of the |
|
ld_left_bound |
A dictionary of the left boundaries of the LD matrices. |
|
std_beta |
A dictionary of the standardized marginal effect sizes from GWAS. |
|
Nj |
A dictionary of the sample size per SNP from the GWAS study. |
|
threads |
The number of threads to use when fitting the model. |
|
fix_params |
A dictionary of hyperparameters with their fixed values. |
|
float_precision |
The precision of the floating point variables. Options are: 'float32' or 'float64'. |
|
order |
The order of the arrays in memory. Options are: 'C' or 'F'. |
|
low_memory |
A boolean flag to indicate whether to use low memory mode. |
|
dequantize_on_the_fly |
A boolean flag to indicate whether to dequantize the LD matrix on the fly. |
|
use_cpp |
A boolean flag to indicate whether to use the C++ backend. |
|
use_blas |
A boolean flag to indicate whether to use BLAS for linear algebra operations. |
|
optim_result |
An instance of OptimizeResult tracking the progress of the optimization algorithm. |
|
verbose |
Verbosity of the information printed to standard output. Can be boolean or an integer. |
|
history |
A dictionary to store the history of the optimization procedure (e.g. the objective as a function of iteration number). |
|
tracked_theta |
A list of hyperparameters to track throughout the optimization procedure. Useful for debugging/model checking. |
Source code in viprs/model/VIPRS.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
|
__init__(gdl, fix_params=None, tracked_theta=None, verbose=True, float_precision='float32', order='F', low_memory=True, use_blas=True, use_cpp=True, dequantize_on_the_fly=False, threads=1)
¶
Initialize the VIPRS model.
.. note:: The initialization of the model involves loading the LD matrix to memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
An instance of GWADataLoader containing harmonized GWAS summary statistics and LD matrices. |
required | |
fix_params |
A dictionary of hyperparameters with their fixed values. |
None
|
|
tracked_theta |
A list of hyperparameters to track throughout the optimization procedure. Useful for debugging/model checking. Currently, we allow the user to track the following: * The proportion of causal variants ( |
None
|
|
verbose |
Verbosity of the information printed to standard output. Can be boolean or an integer. Provide a number greater than 1 for more detailed output. |
True
|
|
float_precision |
The precision of the floating point variables. Options are: 'float32' or 'float64'. |
'float32'
|
|
order |
The order of the arrays in memory. Options are: 'C' or 'F'. |
'F'
|
|
low_memory |
A boolean flag to indicate whether to use low memory mode. |
True
|
|
use_blas |
A boolean flag to indicate whether to use BLAS for linear algebra operations. |
True
|
|
use_cpp |
A boolean flag to indicate whether to use the C++ backend. |
True
|
|
dequantize_on_the_fly |
A boolean flag to indicate whether to dequantize the LD matrix on the fly. |
False
|
|
threads |
The number of threads to use when fitting the model. |
1
|
Source code in viprs/model/VIPRS.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
compute_eta()
¶
Returns:
Type | Description |
---|---|
The mean for the effect size under the variational posterior. |
compute_pip()
¶
compute_zeta()
¶
Returns:
Type | Description |
---|---|
The expectation of the squared effect size under the variational posterior. |
e_step()
¶
Run the E-Step of the Variational EM algorithm. Here, we update the variational parameters for each variant using coordinate ascent optimization techniques. The update equations are outlined in the Supplementary Material of the following paper:
Zabad S, Gravel S, Li Y. Fast and accurate Bayesian polygenic risk modeling with variational inference. Am J Hum Genet. 2023 May 4;110(5):741-761. doi: 10.1016/j.ajhg.2023.03.009. Epub 2023 Apr 7. PMID: 37030289; PMCID: PMC10183379.
Source code in viprs/model/VIPRS.py
elbo(sum_axis=None)
¶
Compute the variational objective, the Evidence Lower-BOund (ELBO),
from GWAS summary statistics and the reference LD data. This implementation assumes
that the product of the LD matrix with the current estimate of the effect sizes
is already computed and stored in the q
dictionary. If this is not the case,
we recommend computing q first and then calling this method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sum_axis |
The axis along which to sum the ELBO. If None, the ELBO is returned as a scalar. |
None
|
Source code in viprs/model/VIPRS.py
fit(max_iter=1000, theta_0=None, param_0=None, continued=False, min_iter=3, f_abs_tol=1e-06, x_abs_tol=1e-07, drop_r_tol=0.01, patience=5)
¶
A convenience method to fit the model using the Variational EM algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_iter |
Maximum number of iterations. |
1000
|
|
theta_0 |
A dictionary of values to initialize the hyperparameters |
None
|
|
param_0 |
A dictionary of values to initialize the variational parameters |
None
|
|
continued |
If true, continue the model fitting for more iterations from current parameters instead of starting over. |
False
|
|
min_iter |
The minimum number of iterations to run before checking for convergence. |
3
|
|
f_abs_tol |
The absolute tolerance threshold for the objective (ELBO). |
1e-06
|
|
x_abs_tol |
The absolute tolerance threshold for the variational parameters. |
1e-07
|
|
drop_r_tol |
The relative tolerance for the drop in the ELBO to be considered as a red flag. It usually happens around convergence that the objective fluctuates due to numerical errors. This is a way to differentiate such random fluctuations from actual drops in the objective. |
0.01
|
|
patience |
The maximum number of times the objective is allowed to drop before termination. |
5
|
Source code in viprs/model/VIPRS.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
|
get_average_effect_size_variance()
¶
Returns:
Type | Description |
---|---|
The average per-SNP variance for the prior mixture components |
Source code in viprs/model/VIPRS.py
get_heritability()
¶
Returns:
Type | Description |
---|---|
An estimate of the SNP heritability, or proportion of variance explained by SNPs. |
get_null_pi(chrom=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chrom |
If provided, get the mixing proportion for the null component on a given chromosome. |
None
|
Returns:
Type | Description |
---|---|
The value of the prior probability of a variant being null, |
Source code in viprs/model/VIPRS.py
get_pi(chrom=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chrom |
Get the value of |
None
|
Returns:
Type | Description |
---|---|
The value of the prior probability of a variant being causal, |
Source code in viprs/model/VIPRS.py
get_proportion_causal()
¶
Returns:
Type | Description |
---|---|
The proportion of causal variants in the model. |
get_sigma_epsilon()
¶
get_tau_beta(chrom=None)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chrom |
Get the value of |
None
|
Returns:
Type | Description |
---|---|
The value of the prior precision on the effect size(s), |
Source code in viprs/model/VIPRS.py
init_optim_meta()
¶
Initialize the various quantities/objects to keep track of the optimization process. This method initializes the "history" object (which keeps track of the objective + other hyperparameters requested by the user), in addition to the OptimizeResult objects.
Source code in viprs/model/VIPRS.py
initialize(theta_0=None, param_0=None)
¶
A convenience method to initialize all the objects associated with the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
theta_0 |
A dictionary of initial values for the hyperparameters theta |
None
|
|
param_0 |
A dictionary of initial values for the variational parameters |
None
|
Source code in viprs/model/VIPRS.py
initialize_theta(theta_0=None)
¶
Initialize the global hyperparameters of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
theta_0 |
A dictionary of initial values for the hyperparameters theta |
None
|
Source code in viprs/model/VIPRS.py
initialize_variational_parameters(param_0=None)
¶
Initialize the variational parameters of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
param_0 |
A dictionary of initial values for the variational parameters |
None
|
Source code in viprs/model/VIPRS.py
m_step()
¶
Run the M-Step of the Variational EM algorithm. Here, we update the hyperparameters of the model, by simply calling the update functions for each hyperparameter separately.
Source code in viprs/model/VIPRS.py
objective()
¶
The optimization objective for the variational inference problem. The objective for the VIPRS method is the Evidence Lower-Bound (ELBO) in this case.
See Also
Source code in viprs/model/VIPRS.py
to_theta_table()
¶
Returns:
Type | Description |
---|---|
A |
Source code in viprs/model/VIPRS.py
update_pi()
¶
Update the prior probability of a variant being causal, or the proportion of causal variants, pi
.
Source code in viprs/model/VIPRS.py
update_posterior_moments()
¶
A convenience method to update the dictionaries containing the posterior moments, including the PIP and posterior mean and variance for the effect size.
Source code in viprs/model/VIPRS.py
update_sigma_epsilon()
¶
Update the global residual variance parameter, sigma_epsilon
.
Source code in viprs/model/VIPRS.py
update_tau_beta()
¶
Update the prior precision (inverse variance) for the effect size, tau_beta
.
Source code in viprs/model/VIPRS.py
update_theta_history()
¶
A convenience method to update the history of the hyperparameters of the model, if the user requested that they should be tracked.
Source code in viprs/model/VIPRS.py
write_inferred_theta(f_name, sep='\t')
¶
A convenience method to write the inferred (and fixed) hyperparameters of the model to file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
f_name |
The file name |
required | |
sep |
The separator for the hyperparameter file. |
'\t'
|