HyperparameterSearch
BaseHyperparamSearch
¶
Bases: object
A generic class for performing hyperparameter search on any genetic PRS model. This API is under active development and some of the components may change in the near future.
TODO: Allow users to choose different metrics under each criterion.
Source code in viprs/model/gridsearch/HyperparameterSearch.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
__init__(gdl, model=None, criterion='training_objective', validation_gdl=None, verbose=False, n_jobs=1)
¶
A generic hyperparameter search class that implements common functionalities that may be required by hyperparameter search strategies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl
|
A GWADataLoader object containing the GWAS summary statistics for inference. |
required | |
model
|
An instance of the PRS model to use for the hyperparameter search. By default, we use |
None
|
|
criterion
|
The objective function for the hyperparameter search. Options are: |
'training_objective'
|
|
validation_gdl
|
If the objective is validation or pseudo-validation, provide the GWADataLoader object for the validation dataset. If the criterion is pseudo-validation, the |
None
|
|
verbose
|
Verbosity of the information printed to standard output. |
False
|
|
n_jobs
|
The number of processes to use for the hyperparameters search. |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
to_validation_table()
¶
Summarize the validation results in a pandas table.
Returns:
Type | Description |
---|---|
A pandas DataFrame with the validation results. |
Source code in viprs/model/gridsearch/HyperparameterSearch.py
write_validation_result(v_filename, sep='\t')
¶
After performing hyperparameter search, write a table that records that value of the objective for each combination of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v_filename
|
The filename for the validation table. |
required | |
sep
|
The separator for the validation table |
'\t'
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
GridSearch
¶
Bases: BaseHyperparamSearch
Hyperparameter search using Grid Search
Source code in viprs/model/gridsearch/HyperparameterSearch.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
__init__(gdl, grid, model=None, criterion='training_objective', validation_gdl=None, verbose=False, n_jobs=1)
¶
Perform hyperparameter search using grid search
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl
|
A GWADataLoader object containing the GWAS summary statistics for inference. |
required | |
model
|
An instance of the PRS model to use for the hyperparameter search. By default, we use |
None
|
|
criterion
|
The objective function for the hyperparameter search. Options are: |
'training_objective'
|
|
validation_gdl
|
If the objective is validation or pseudo-validation, provide the GWADataLoader object for the validation dataset. If the criterion is pseudo-validation, the |
None
|
|
verbose
|
Verbosity of the information printed to standard output. |
False
|
|
n_jobs
|
The number of processes to use for the hyperparameters search. |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
fit(max_iter=1000, f_abs_tol=1e-06, x_abs_tol=1e-06)
¶
Perform grid search over the hyperparameters to determine the
best model based on the criterion set by the user. This utility method
performs model fitting across the grid of hyperparameters, potentially in parallel
if n_jobs
is greater than 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_iter
|
The maximum number of iterations to run for each model fit. |
1000
|
|
f_abs_tol
|
The absolute tolerance for the function convergence criterion. |
1e-06
|
|
x_abs_tol
|
The absolute tolerance for the parameter convergence criterion. |
1e-06
|
Returns:
Type | Description |
---|---|
The best model based on the criterion set by the user. |
Source code in viprs/model/gridsearch/HyperparameterSearch.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
fit_model_fixed_params(model, fixed_params, shm_data=None, **fit_kwargs)
¶
Perform model fitting using a set of fixed set of hyperparameters.
This is a helper function to allow users to use the multiprocessing
module
to fit PRS models in parallel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
A PRS model object that implements a |
required | |
fixed_params
|
A dictionary of fixed parameters to use for the model fitting. |
required | |
shm_data
|
A dictionary of shared memory data to use for the model fitting. This is primarily used to share LD data across multiple processes. |
None
|
|
fit_kwargs
|
Key-word arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
A dictionary containing the coefficient table, hyperparameter table and the training objective. If the model did not converge successfully, return |