HyperparameterSearch
BMA
¶
Bases: BayesPRSModel
Bayesian Model Averaging fitting procedure
Source code in viprs/model/gridsearch/HyperparameterSearch.py
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
|
__init__(gdl, grid, model=None, normalization='softmax', verbose=False, n_jobs=1)
¶
Integrate out hyperparameters using Bayesian Model Averaging
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
A GWADataLoader object |
required | |
grid |
A HyperParameterGrid object |
required | |
model |
A |
None
|
|
normalization |
The normalization scheme for the final ELBOs. Options are ( |
'softmax'
|
|
verbose |
Detailed messages and print statements. |
False
|
|
n_jobs |
The number of processes to use for the BMA |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
BayesOpt
¶
Bases: HyperparameterSearch
Hyperparameter search using Bayesian optimization
Source code in viprs/model/gridsearch/HyperparameterSearch.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
__init__(gdl, opt_params, param_bounds=None, model=None, criterion='ELBO', validation_gdl=None, verbose=False, n_jobs=1)
¶
Perform hyperparameter search using Bayesian optimization
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
A GWADataLoader object |
required | |
opt_params |
A list of the hyperparameters to optimize over (e.g. 'pi', 'sigma_epsilon', 'sigma_beta'). |
required | |
param_bounds |
The bounds for each hyperparameter included in the optimization. A list of tuples, where each tuples records the (min, max) values for each hyperparameter. |
None
|
|
model |
A |
None
|
|
criterion |
The objective function for the hyperparameter search (ELBO or validation). |
'ELBO'
|
|
validation_gdl |
If the objective is validation, provide the GWADataLoader object for the validation dataset. |
None
|
|
verbose |
Detailed messages and print statements. |
False
|
|
n_jobs |
The number of processes to use for the hyperparameters search (not applicable here). |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
fit(max_iter=50, f_abs_tol=0.0001, n_calls=30, n_random_starts=5, acq_func='gp_hedge')
¶
Perform model fitting and hyperparameter search using Bayesian optimization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_calls |
The number of model runs with different hyperparameter settings. |
30
|
|
n_random_starts |
The number of random starts to initialize the optimizer. |
5
|
|
acq_func |
The acquisition function (default: |
'gp_hedge'
|
|
max_iter |
The maximum number of iterations within the search (default: 50). |
50
|
|
f_abs_tol |
The absolute tolerance for the objective (ELBO) within the search |
0.0001
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
GridSearch
¶
Bases: HyperparameterSearch
Hyperparameter search using Grid Search
Source code in viprs/model/gridsearch/HyperparameterSearch.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
__init__(gdl, grid, model=None, criterion='ELBO', validation_gdl=None, verbose=False, n_jobs=1)
¶
Perform hyperparameter search using grid search
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
A GWADataLoader object |
required | |
grid |
A HyperParameterGrid object |
required | |
model |
A |
None
|
|
criterion |
The objective function for the grid search (ELBO or validation). |
'ELBO'
|
|
validation_gdl |
If the objective is validation, provide the GWADataLoader object for the validation dataset. |
None
|
|
verbose |
Detailed messages and print statements. |
False
|
|
n_jobs |
The number of processes to use for the grid search |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
HyperparameterSearch
¶
Bases: object
A generic class for performing hyperparameter search on the
VIPRS
model. This interface is old and will likely be deprecated
in future releases. It is recommended to use the VIPRSGrid
class
and its derivatives for performing grid search instead.
Source code in viprs/model/gridsearch/HyperparameterSearch.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
__init__(gdl, model=None, criterion='ELBO', validation_gdl=None, verbose=False, n_jobs=1)
¶
A generic hyperparameter search class that implements common functionalities that may be required by hyperparameter search strategies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
A GWADataLoader object |
required | |
model |
A |
None
|
|
criterion |
The objective function for the hyperparameter search. Options are: |
'ELBO'
|
|
validation_gdl |
If the objective is validation, provide the GWADataLoader object for the validation dataset. |
None
|
|
verbose |
Detailed messages and print statements. |
False
|
|
n_jobs |
The number of processes to use for the hyperparameters search. |
1
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
multi_objective(models)
¶
This method evaluates multiple PRS models simultaneously. This can be faster for some evaluation criteria, such as the validation R^2, because we only need to multiply the inferred effect sizes with the genotype matrix only once.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
models |
A list of PRS models that we wish to evaluate. |
required |
Source code in viprs/model/gridsearch/HyperparameterSearch.py
objective(model)
¶
A method that takes the result of fitting the model
and returns the desired objective (either ELBO
, pseudo_validation
, or validation
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
The PRS model to evaluate |
required |
Source code in viprs/model/gridsearch/HyperparameterSearch.py
to_validation_table()
¶
Summarize the validation results in a pandas table.
Source code in viprs/model/gridsearch/HyperparameterSearch.py
write_validation_result(v_filename, sep='\t')
¶
After performing hyperparameter search, write a table that records that value of the objective for each combination of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v_filename |
The filename for the validation table. |
required | |
sep |
The separator for the validation table |
'\t'
|
Source code in viprs/model/gridsearch/HyperparameterSearch.py
fit_model_fixed_params(params)
¶
Perform model fitting using a set of fixed parameters.
This is a helper function to allow us to use the multiprocessing
module
to fit PRS models in parallel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
A tuple of (BayesPRSModel, fixed parameters dictionary, and kwargs for the .fit() method). |
required |