VIPRSGrid
VIPRSGrid
¶
Bases: VIPRS
A class to fit the VIPRS
model to data using a grid of hyperparameters.
Instead of having a single set of hyperparameters, we simultaneously fit
multiple models with different hyperparameters and compare their performance
at the end. This class is generic and does not support any model selection or
averaging schemes.
The class inherits all the basic attributes from the VIPRS class.
See Also
Attributes:
Name | Type | Description |
---|---|---|
grid_table |
A pandas table containing the hyperparameters for each model. |
|
n_models |
The number of models to fit. |
|
shapes |
A dictionary containing the shapes of the data matrices. |
|
active_models |
A boolean array indicating which models are still active (i.e. not converged). |
Source code in viprs/model/gridsearch/VIPRSGrid.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
|
models_to_keep
property
¶
Returns:
Type | Description |
---|---|
A boolean array indicating which models have converged successfully. |
__init__(gdl, grid, **kwargs)
¶
Initialize the VIPRS
model with a grid of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl |
An instance of |
required | |
grid |
An instance of |
required | |
kwargs |
Additional keyword arguments to pass to the parent |
{}
|
Source code in viprs/model/gridsearch/VIPRSGrid.py
e_step()
¶
Run the E-Step of the Variational EM algorithm. Here, we update the variational parameters for each variant using coordinate ascent optimization techniques. The coordinate ascent procedure is run on all the models in the grid simultaneously. The update equations are outlined in the Supplementary Material of the following paper:
Zabad S, Gravel S, Li Y. Fast and accurate Bayesian polygenic risk modeling with variational inference. Am J Hum Genet. 2023 May 4;110(5):741-761. doi: 10.1016/j.ajhg.2023.03.009. Epub 2023 Apr 7. PMID: 37030289; PMCID: PMC10183379.
Source code in viprs/model/gridsearch/VIPRSGrid.py
fit(max_iter=1000, theta_0=None, param_0=None, continued=False, min_iter=3, f_abs_tol=1e-06, x_abs_tol=1e-07, drop_r_tol=1e-06, patience=5)
¶
A convenience method to fit all the models in the grid using the Variational EM algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_iter |
Maximum number of iterations. |
1000
|
|
theta_0 |
A dictionary of values to initialize the hyperparameters |
None
|
|
param_0 |
A dictionary of values to initialize the variational parameters |
None
|
|
continued |
If true, continue the model fitting for more iterations. |
False
|
|
min_iter |
The minimum number of iterations to run before checking for convergence. |
3
|
|
f_abs_tol |
The absolute tolerance threshold for the objective (ELBO). |
1e-06
|
|
x_abs_tol |
The absolute tolerance threshold for the variational parameters. |
1e-07
|
|
drop_r_tol |
The relative tolerance for the drop in the ELBO to be considered as a red flag. It usually happens around convergence that the objective fluctuates due to numerical errors. This is a way to differentiate such random fluctuations from actual drops in the objective. |
1e-06
|
|
patience |
The maximum number of times the objective is allowed to drop before termination. |
5
|
Source code in viprs/model/gridsearch/VIPRSGrid.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
|
init_optim_meta()
¶
Initialize the various quantities/objects to keep track of the optimization process. This method initializes the "history" object (which keeps track of the objective + other hyperparameters requested by the user), in addition to the OptimizeResult objects.
Source code in viprs/model/gridsearch/VIPRSGrid.py
initialize_theta(theta_0=None)
¶
Initialize the global hyperparameters of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
theta_0 |
A dictionary of initial values for the hyperparameters theta |
None
|
Source code in viprs/model/gridsearch/VIPRSGrid.py
to_theta_table()
¶
Returns:
Type | Description |
---|---|
A |
Source code in viprs/model/gridsearch/VIPRSGrid.py
to_validation_table()
¶
Returns:
Type | Description |
---|---|
The validation table summarizing the performance of each model. |
Raises:
Type | Description |
---|---|
ValueError
|
if the validation result is not set. |
Source code in viprs/model/gridsearch/VIPRSGrid.py
write_validation_result(v_filename, sep='\t')
¶
After performing hyperparameter search, write a table that records that value of the objective for each combination of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v_filename |
The filename for the validation table. |
required | |
sep |
The separator for the validation table |
'\t'
|