VIPRSGrid
VIPRSGrid
¶
Bases: VIPRS
A class to fit the VIPRS
model to data using a grid of hyperparameters.
Instead of having a single set of hyperparameters, we simultaneously fit
multiple models with different hyperparameters and compare their performance
at the end. The models with different hyperparameters are fit serially and in
a pathwise manner, meaning that fit one model at a time and use its inferred parameters
to initialize the next model.
The class inherits all the basic attributes from the VIPRS class.
Attributes:
Name | Type | Description |
---|---|---|
grid_table |
A pandas table containing the hyperparameters for each model. |
|
validation_result |
A pandas table summarizing the performance of each model. |
|
optim_results |
A list of optimization results for each model. |
|
n_models |
The number of models to fit. |
Source code in viprs/model/gridsearch/VIPRSGrid.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
converged_models
property
¶
Returns:
Type | Description |
---|---|
A boolean array indicating which models have converged successfully. |
models_to_keep
property
¶
Returns:
Type | Description |
---|---|
A boolean array indicating which models have converged successfully. |
terminated_models
property
¶
Returns:
Type | Description |
---|---|
A boolean array indicating which models have terminated. |
valid_terminated_models
property
¶
Returns:
Type | Description |
---|---|
A boolean array indicating which models have terminated without error. |
__init__(gdl, grid, **kwargs)
¶
Initialize the VIPRS
model with a grid of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdl
|
An instance of |
required | |
grid
|
An instance of |
required | |
kwargs
|
Additional keyword arguments to pass to the parent |
{}
|
Source code in viprs/model/gridsearch/VIPRSGrid.py
fit(pathwise=True, **fit_kwargs)
¶
Fit the VIPRS model to the data using a grid of hyperparameters.
The method fits multiple models with different hyperparameters and compares their performance
at the end. By default, the models with different hyperparameters are fit serially and
in a pathwise manner, meaning that fit one model at a time and use its inferred
parameters to initialize the next model. The user can also fit the models independently by
setting pathwise=False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pathwise
|
Whether to fit the models in a pathwise manner. Default is |
True
|
|
fit_kwargs
|
Additional keyword arguments to pass to fit method of the parent |
{}
|
Returns:
Type | Description |
---|---|
An instance of the |
Source code in viprs/model/gridsearch/VIPRSGrid.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
init_optim_meta()
¶
Initialize the various quantities/objects to keep track of the optimization process. This method initializes the "history" object (which keeps track of the objective + other hyperparameters requested by the user), in addition to the OptimizeResult objects.
Source code in viprs/model/gridsearch/VIPRSGrid.py
to_validation_table()
¶
Returns:
Type | Description |
---|---|
The validation table summarizing the performance of each model. |
Raises:
Type | Description |
---|---|
ValueError
|
if the validation result is not set. |
Source code in viprs/model/gridsearch/VIPRSGrid.py
write_validation_result(v_filename, sep='\t')
¶
After performing hyperparameter search, write a table that records that value of the objective for each combination of hyperparameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v_filename
|
The filename for the validation table. |
required | |
sep
|
The separator for the validation table |
'\t'
|