Grid utils
bayesian_model_average(viprs_grid_model, normalization='softmax')
¶
Use Bayesian model averaging (BMA) to obtain a weighing scheme for the variational parameters of a grid of VIPRS models. The parameters of each model in the grid are assigned weights proportional to their final ELBO.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
viprs_grid_model
|
An instance of |
required | |
normalization
|
The normalization scheme for the final ELBOs. Options are ( |
'softmax'
|
Raises:
Type | Description |
---|---|
KeyError
|
If the normalization scheme is not recognized. |
Source code in viprs/model/gridsearch/grid_utils.py
select_best_model(viprs_grid_model, validation_gdl=None, criterion='ELBO')
¶
From the grid of models that were fit to the data, select the best
model according to the specified criterion
. If the criterion is the ELBO,
the model with the highest ELBO will be selected. If the criterion is
validation or pseudo-validation, the model with the highest R^2 on the
held-out validation set will be selected.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
viprs_grid_model
|
An instance of |
required | |
validation_gdl
|
An instance of |
None
|
|
criterion
|
The criterion for selecting the best model. Options are: ( |
'ELBO'
|
Source code in viprs/model/gridsearch/grid_utils.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|