Compute utils
dict_concat(d, axis=0)
¶
Concatenate the values of a dictionary into a single vector
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
A dictionary where values are numeric scalars or vectors |
required | |
axis |
Concatenate along given axis. |
0
|
Source code in viprs/utils/compute_utils.py
dict_dot(d1, d2)
¶
Perform dot product on the elements of d1 and d2
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d1 |
A dictionary where values are numeric scalars or vectors |
required | |
d2 |
A dictionary where values are numeric scalars or vectors |
required |
Source code in viprs/utils/compute_utils.py
dict_elementwise_dot(d1, d2)
¶
Apply element-wise product between the values of two dictionaries
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d1 |
A dictionary where values are numeric scalars or vectors |
required | |
d2 |
A dictionary where values are numeric scalars or vectors |
required |
Source code in viprs/utils/compute_utils.py
dict_elementwise_transform(d, transform)
¶
Apply a transformation to values of a dictionary
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
A dictionary where values are numeric scalars or vectors |
required | |
transform |
A function to apply to |
required |
Source code in viprs/utils/compute_utils.py
dict_mean(d, axis=None)
¶
Estimate the mean of the values of a dictionary
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
A dictionary where values are numeric scalars or vectors |
required | |
axis |
Perform aggregation along given axis. |
None
|
Source code in viprs/utils/compute_utils.py
dict_repeat(value, shapes)
¶
Given a value, create a dictionary where the value is repeated according to the shapes parameter
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shapes |
A dictionary of shapes. Key is arbitrary, value is integer input to np.repeat |
required | |
value |
The value to repeat |
required |
Source code in viprs/utils/compute_utils.py
dict_set(d, value)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
A dictionary where values are numeric vectors |
required | |
value |
A value to set for all vectors |
required |
dict_sum(d, axis=None, transform=None)
¶
Estimate the sum of the values of a dictionary
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d |
A dictionary where values are numeric scalars or vectors |
required | |
axis |
Perform aggregation along given axis. |
None
|
|
transform |
Transformation to apply before summing. |
None
|
Source code in viprs/utils/compute_utils.py
expand_column_names(c_name, shape, sep='_')
¶
Given a desired column name c_name
and a matrix shape
that we'd like to apply the column name to, return a list of
column names for every column in the matrix. The column names will be
in the form of c_name
followed by an index, separated by sep
.
For example, if the column name is BETA
, the
shape is (100, 3) and the separator is _
, we return a list with:
[BETA_0
, BETA_1
, BETA_2
]
If the matrix in question is a vector, we just return the column name without any indices appended to it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
c_name |
A string object |
required | |
shape |
The shape of a numpy matrix or vector |
required | |
sep |
The separator |
'_'
|
Source code in viprs/utils/compute_utils.py
fits_in_memory(alloc_size, max_prop=0.9)
¶
Check whether there's enough memory resources to load an object with the given allocation size (in MB).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alloc_size |
The allocation size |
required | |
max_prop |
The maximum proportion of available memory allowed for the object |
0.9
|